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Exercise I (MATLAB)

Consider the two dimensional truss bridge reported in Figure 1 composed by a triangular lattice of
beams linked at some joints (nodes). We consider Nnodes nodes (an odd number). Each triangle is
equilateral. We assume that all the beams possess the same elastic properties and that they can
uniquely carry axial loads. External forces can be applied only at the nodes. Our goal is to compute
the displacements of the bridge’s nodes under the action of external forces. We index nodes using
the integer i, with odd values of i denoting the bottom nodes, see Figure 1.

Figure 1: Truss bridge model.

We denote by ui ∈ R2 the displacement vector of each node i = 1, . . . , Nnodes and by f exti ∈ R2 the
external force applied at node i. The (axial) internal forces f inti,j acting between the beams and the
nodes depend on the displacements of the nodes i and j and the beams’ orientations; they read:

f inti,i−1 = kbeamTa(ui − ui−1) for i = 2, 4, 6, . . . , Nnodes − 1,

1



f inti,i−1 = kbeamTb(ui − ui−1) for i = 3, 5, 7, . . . , Nnodes,

f inti,i−2 = kbeamTh(ui − ui−2) for i = 3, 4, 5, . . . , Nnodes,

where kbeam is the elastic constant of the beams and
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To impose equilibrium of internal and external forces at each node of the bridge, we set∑
j∈Ii

f inti,j = f exti , Ii := {i− 2, i− 1, i+ 1, i+ 2} ∩ {k}Nnodes
k=1 , for all i = 1, . . . , Nnodes.

This leads to a discrete structural problem of the form

Ad = b,

where
d = ((u1)

T , (u2)
T , . . . , (uNnodes

)T )T ∈ R2Nnodes

is the unknown solution vector representing the displacements of each node of the bridge. The
matrix A ∈ Rn×n is called the stiffness matrix and depends on the elastic properties of the beams
and the pattern (the connectivity) of the lattice. The matrix A is sparse and has a block structure:

A = kbeam



(Th + Ta) −Ta −Th

−Ta (Th + Ta + Tb) −Tb −Th

−Th −Tb (2Th + Ta + Tb) −Ta −Th

−Th −Ta (2Th + Ta + Tb) −Tb −Th

. . .
. . .

. . .
. . .

. . .

−Th −Tb (Th + Tb)


.

The vector
b = ((f ext1 )T , (f ext2 )T , . . . , (f extNnodes

)T )T ∈ R2Nnodes

contains the external forces f exti ∈ R2 acting on each node i = 1, . . . , Nnodes.

a) Set Nnodes = 29 and kbeam = 103. Build the stiffness matrix A in sparse format. Is A symmet-
ric? Is it invertible? (Hint : use condest.) Note: you should verify your implementation by
comparing your A with the matrix obtained via the provided bridge stiffness matrix.m
function.

b) In order to make the structural problem well-posed we need to constrain at least three entries of
the vector d by providing boundary conditions. We want to impose zero displacements of the
leftmost node for both vertical and horizontal components, and a zero vertical displacement
of the rightmost node. To this aim, extract a system Ãd̃ = b̃ of reduced size 2Nnodes − 3,
where the three above-mentioned entries of d have been removed. Is Ã invertible?

c) Impose downward external forces f exti = (0,−1)T at all the (odd-indexed) bottom nodes.

Compute the corresponding displacement vector d̃. Visualize the deformed configuration of
the bridge using the provided plot bridge.m function. Note that plot bridge.m requires
d as input.
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d) Assume that we are interested in determining the displacements d for several different external
loads. Since the system matrix Ã stays the same while the right-hand-side b̃ changes, it makes
sense to compute (only once) the LU factorization of Ã and then solve the triangular systems
with different right-hand-sides. Do this for 10 different (random) external loads.

e) Repeat point c) using iterative methods to solve the linear system. First, use the MATLAB
function gmres implementing the GMRES method. Then, use (without preconditioning) the
MATLAB function pcg that implements the conjugate gradient method.

Exercise II (MATLAB)

Consider the matrix A =


5 −2 −1 0

−2 5 −1 −1
−1 −1 4 −1
0 −1 −1 5

.
a) Write a MATLAB function power method.m that implements the power method to compute

the largest (in magnitude) eigenvalue of a general matrix A ∈ Cn×n. Use the following
template:

�
function [ lambda, x, k ] = power method( A, x0, tol, kmax )
% POWER METHOD power method for the computation of the largest eigenvalue
% (in modulus) of the matrix A (\lambda 1). We assume that A is square,
% | \lambda 1 | > | lambda i | for i=2,...n, and \lambda 1 non zero
% Stopping criterion based on the relative difference of successive
% iterates of the eigenvalue.
% [ lambda, x ] = power method( A, x0, tol, kmax )
% Inputs: A = matrix (n x n)
% x0 = initial vector (n x 1)
% tol = tolerance for the stopping criterion
% kmax = maximum number of iterations
% Output: lambda = computed (largest) eigenvalue
% x = computed eigenvector correspoding to lambda
% k = number of iterations
%

return� �
b) Compute the largest (in magnitude) eigenvalue of the matrix A using power method.m, by

setting x(0) = (1, . . . , 1)T and tol = 10−6. Compare the obtained value with the “exact” one
computed with eig.

c) Recall that the eigenvalues of A are the reciprocals of those of A−1 (if A is nonsingular). Use
power method.m to compute the smallest (in magnitude) eigenvalue of A.

d) Given a shift s, set B = A − sI, with I the identity matrix. Choose a value of s that turns
the smallest (in magnitude) eigenvalue of A into the largest (shifted) eigenvalue of B. Then
apply the power method to B to approximate the smallest (in magnitude) eigenvalue of A.

Exercise III (MATLAB)
Consider the structural bridge model from Exercise 1. Assume that each node of the bridge has
mass mnode, while the beams are weightless. Define the diagonal matrix M ∈ R2Nnode×2Nnode =
diag(mnode, . . . ,mnode).
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a) Set Nnodes = 29. Assemble the stiffness and mass matrices A and M , when mnode = 1 and
kbeam = 4 · 102. Then, constrain three displacements as in point b) of Exercise 1, obtaining
reduced matrices of size 2Nnode−3. Consider the corresponding generalized eigenvalue problem
Ãx̃ = λ̃M̃ x̃. Verify that the matrices Ã and M̃ are nonsingular.

b) Compute the 10 smallest (in magnitude) eigenvalues of the generalized eigenvalue problem
using eigs. Using plot bridge.m, visualize the corresponding eigenmodes.
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